Skip to content

Reproducing Panoptic Seg 100-5 results #7

@kmn5409

Description

@kmn5409

I recently tried to train the Panoptic Segmentation setting for ADE20K for the 100-5 setting. The following command I used to train the model was

python train_continual.py --dist-url auto --num-gpus 1 --config-file configs/ade20k/panoptic-segmentation/100-5.yaml \
    CONT.TASK 1 SOLVER.BASE_LR 0.0 SOLVER.MAX_ITER 2524 CONT.COLLECT_QUERY_MODE True OUTPUT_DIR ./output/ps/100-5/step1

python train_continual.py --dist-url auto --num-gpus $ngpus --config-file configs/ade20k/panoptic-segmentation/100-5.yaml \
    CONT.TASK 1 SOLVER.BASE_LR 0.0001 SOLVER.MAX_ITER 160000 CONT.COLLECT_QUERY_MODE False OUTPUT_DIR ./output/ps/100-5/step1

However when testing for the first time step I get an mIoU of 25.743. But when using the base weights from huggingface (https://huggingface.co/LightningNO1/SimCIS/tree/main/ps_100base) when I test for step 1 I get 61.7.

Can you suggest any problems I might be doing wrong?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions