Skip to content

Why there is a - in front of the regression_loss? #15

@Wang-Yu-Qing

Description

@Wang-Yu-Qing

in zero_inflated_lognormal.py line 76:

      regression_loss = -tf.keras.backend.mean(
      positive * tfd.LogNormal(loc=loc, scale=scale).log_prob(safe_labels),
      axis=-1)

     return classification_loss + regression_loss

In the paper, the Loss equals CrossEntropyLoss + LogNormalLoss, so why there is a minus in front of the LogNormalLoss?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions