Skip to content

get predictions for all tasks in single forward pass #6

@yurakuratov

Description

@yurakuratov

Hi!

Is it possible to use model trained on 4 facial-informatic tasks in a way that it can produce predictions for all tasks in single forward pass?

Something like in the following code:

class SphereNetMT(SphereNet):
    """ Multi-task version of SphereNet, returns predictions for all classifiers in single forward pass
    """
    
    def forward(self, x, tasks=['gender', 'emotion', 'age0']):
        x = self.relu1_1(self.conv1_1(x))
        x = x + self.relu1_3(self.conv1_3(self.relu1_2(self.conv1_2(x))))
        x = self.relu2_1(self.conv2_1(x))
        x = x + self.relu2_3(self.conv2_3(self.relu2_2(self.conv2_2(x))))
        x = x + self.relu2_5(self.conv2_5(self.relu2_4(self.conv2_4(x))))
        x = self.relu3_1(self.conv3_1(x))
        x = x + self.relu3_3(self.conv3_3(self.relu3_2(self.conv3_2(x))))
        x = x + self.relu3_5(self.conv3_5(self.relu3_4(self.conv3_4(x))))
        x = x + self.relu3_7(self.conv3_7(self.relu3_6(self.conv3_6(x))))
        x = x + self.relu3_9(self.conv3_9(self.relu3_8(self.conv3_8(x))))
        x = self.relu4_1(self.conv4_1(x))
        x = x + self.relu4_3(self.conv4_3(self.relu4_2(self.conv4_2(x))))
        x = self.flatten(x)
        predictions = {}
        for i, task in enumerate(tasks):
            predictions[task] = self.classifiers[self.datasets.index(task)](x)
        return predictions

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions