SynapseEd is a cutting-edge educational platform that revolutionizes learning through advanced AI technologies. It enables real-time collaboration, intelligent content generation, and highly personalized learning experiences to empower both students and educators.
| Category | Technologies |
|---|---|
| Core Framework | Next.js 15.2.4 , TypeScript |
| UI/UX | Radix UI, TailwindCSS, Shadcn/ui, Framer Motion |
| Real-time Features | Socket.IO, Server-Sent Events (SSE), Server-Side Rendering (SSR) |
| Category | Technologies |
|---|---|
| API Framework | Flask, eventlet, NEXT.js |
| AI/ML Stack | LangChain, LangGraph, OpenAI, Gemini, Groq, Hugging Face Transformers, Tavily |
| Custom Model | LoRA Fine-Tuned Gemma Model |
| Vector Database | FAISS |
| Real-time Infra | WebSocket |
| Component | Technologies |
|---|---|
| Primary Database | Supabase PostgreSQL |
| ORM & Realtime | Prisma ORM, Supabase (Auth & Realtime) |
| Feature | Description |
|---|---|
| Intelligent Content Gen. | Dynamic lecture planning, content summarization, class-chat AI |
| Personalized Learning | Progress analytics, performance insights |
| AI Counselor | Personalized feedback based on progress and performance |
| Feature | Description |
|---|---|
| Question Generation | Teachers upload class content (PDF, notes); AI generates MCQs with options, answers, hints, and solutions. |
| Exam Creation | Auto-generates structured exams from approved questions. |
| Anti-Cheat System | Clipboard tracking, tab-switch detection, and webcam-based eye movement monitoring. |
| Student Analysis | Per-question time tracking and topic-wise strength/weakness analysis post-exam. |
| Class Analytics | Teachers get comprehensive performance metrics across the class. |
| Feature | Description |
|---|---|
| AI Viva Simulation | Real-time oral exam simulation, AI verbal response & feedback |
| Instant Evaluation | Real-time assessment with improvement suggestions |
| Feature | Description |
|---|---|
| Virtual Whiteboard | AI-powered, interactive & collaborative |
| Shared Docs & Brainstorming | Multi-user real-time collaboration tools |
| Diagram & Summary Tools | Instant class diagram & summary generation |
| Paradigm | Capabilities |
|---|---|
| Retrieval-Augmented Generation (RAG) | Semantic chunking, metadata enrichment, vector search, context retrieval |
| Agentic Architecture | Multi-agent task decomposition, parallelism, error handling, web crawling |
| LangGraph Workflows | Graph-based execution, state management, error recovery |
| Endpoint | Description |
|---|---|
POST /api/content-gen/pdf/generate |
Generate lecture content in PDF format |
| Endpoint | Description |
|---|---|
POST /api/lecture-planner/generate |
Generate new lecture plan |
GET/DELETE /api/lecture-planner/{plan_id} |
Retrieve/Delete specific plan |
PUT /api/lecture-planner/{plan_id}/topics |
Update lecture topics |
PUT /api/lecture-planner/{plan_id}/teaching-methods |
Update teaching methods |
PUT /api/lecture-planner/{plan_id}/resources |
Update resources |
PUT /api/lecture-planner/{plan_id}/learning-objectives |
Update learning objectives |
| Endpoint | Description |
|---|---|
POST /api/q-gen/upload |
Upload PDF to generate questions |
GET /api/q-gen/status/{job_id} |
Check generation status |
GET /api/q-gen/questions/{job_id} |
Retrieve generated questions |
| Endpoint | Description |
|---|---|
POST /api/viva/start |
Start a new viva session |
POST /api/viva/chat |
Process interaction during viva |
POST /api/viva/cleanup |
Clean up session data and audio |
| Endpoint | Description |
|---|---|
POST /api/web-search/search |
Perform AI-enhanced web search |
POST /api/web-search/memory-stats |
Retrieve memory and user profile info |
POST /api/web-search/feedback |
Submit feedback for AI search responses |
[Incomplete Documentation]
{
"topic": "Introduction to Quantum Computing",
"additional_context": "Focus on basic concepts",
"sections": ["Overview", "Key Concepts", "Applications"],
"llm_provider": "openai"
}{
"subject": "Computer Science",
"topic": "Data Structures",
"difficulty": "medium",
"voice": "onyx"
}{
"message": "Explain quantum computing basics",
"conversation_id": "conv_123",
"context": {
"user_level": "beginner"
}
}[Incomplete Documentation]
Node.js >= 20
Python >= 3.11cd frontend
pnpm install
pnpm run db
pnpm run dev:allcd agents
python -m venv .venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
python app.pycp .env.example .env
# Fill in your environment variables-
Frontend: http://localhost:3000
-
Backend: http://localhost:5000
| βοΈ | Name | GitHub |
|---|---|---|
![]() |
Faysal Mahmud | Faysal-star |
![]() |
Iqbal Mahamud | iq-bal |
![]() |
Raufun Ahsan | taut0logy |
![]() |
Abir Rahman | abirzishan32 |
![]() |
MD Sakibur Rahman | SakiburRahman07 |
β¨ Made with β€οΈ by the SynapseEd Team β¨




