Skip to content

Faysal-star/synapseEd

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

77 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“ SynapseEd - Next-Generation AI-Powered Learning Platform

SynapseEd Logo


🌟 Overview

SynapseEd is a cutting-edge educational platform that revolutionizes learning through advanced AI technologies. It enables real-time collaboration, intelligent content generation, and highly personalized learning experiences to empower both students and educators.


πŸ› οΈ Tech Stack

🧩 Frontend Architecture

Category Technologies
Core Framework Next.js 15.2.4 , TypeScript
UI/UX Radix UI, TailwindCSS, Shadcn/ui, Framer Motion
Real-time Features Socket.IO, Server-Sent Events (SSE), Server-Side Rendering (SSR)

πŸ§ͺ Backend Architecture

Category Technologies
API Framework Flask, eventlet, NEXT.js
AI/ML Stack LangChain, LangGraph, OpenAI, Gemini, Groq, Hugging Face Transformers, Tavily
Custom Model LoRA Fine-Tuned Gemma Model
Vector Database FAISS
Real-time Infra WebSocket

πŸ—ƒοΈ Database & Storage

Component Technologies
Primary Database Supabase PostgreSQL
ORM & Realtime Prisma ORM, Supabase (Auth & Realtime)

✨ Key Features

πŸ€– AI-Powered Learning

Feature Description
Intelligent Content Gen. Dynamic lecture planning, content summarization, class-chat AI
Personalized Learning Progress analytics, performance insights
AI Counselor Personalized feedback based on progress and performance

βœ’οΈ AI-Assisted Exam System

Feature Description
Question Generation Teachers upload class content (PDF, notes); AI generates MCQs with options, answers, hints, and solutions.
Exam Creation Auto-generates structured exams from approved questions.
Anti-Cheat System Clipboard tracking, tab-switch detection, and webcam-based eye movement monitoring.
Student Analysis Per-question time tracking and topic-wise strength/weakness analysis post-exam.
Class Analytics Teachers get comprehensive performance metrics across the class.

🧠 Viva & Evaluation Tools

Feature Description
AI Viva Simulation Real-time oral exam simulation, AI verbal response & feedback
Instant Evaluation Real-time assessment with improvement suggestions

🧾 Interactive & Collaborative Tools

Feature Description
Virtual Whiteboard AI-powered, interactive & collaborative
Shared Docs & Brainstorming Multi-user real-time collaboration tools
Diagram & Summary Tools Instant class diagram & summary generation

πŸ” AI Paradigms

Paradigm Capabilities
Retrieval-Augmented Generation (RAG) Semantic chunking, metadata enrichment, vector search, context retrieval
Agentic Architecture Multi-agent task decomposition, parallelism, error handling, web crawling
LangGraph Workflows Graph-based execution, state management, error recovery

πŸ“š API Documentation

Content Generation

Endpoint Description
POST /api/content-gen/pdf/generate Generate lecture content in PDF format

Lecture Planning

Endpoint Description
POST /api/lecture-planner/generate Generate new lecture plan
GET/DELETE /api/lecture-planner/{plan_id} Retrieve/Delete specific plan
PUT /api/lecture-planner/{plan_id}/topics Update lecture topics
PUT /api/lecture-planner/{plan_id}/teaching-methods Update teaching methods
PUT /api/lecture-planner/{plan_id}/resources Update resources
PUT /api/lecture-planner/{plan_id}/learning-objectives Update learning objectives

Question Generation

Endpoint Description
POST /api/q-gen/upload Upload PDF to generate questions
GET /api/q-gen/status/{job_id} Check generation status
GET /api/q-gen/questions/{job_id} Retrieve generated questions

Viva Examination

Endpoint Description
POST /api/viva/start Start a new viva session
POST /api/viva/chat Process interaction during viva
POST /api/viva/cleanup Clean up session data and audio

Web Search & Memory

Endpoint Description
POST /api/web-search/search Perform AI-enhanced web search
POST /api/web-search/memory-stats Retrieve memory and user profile info
POST /api/web-search/feedback Submit feedback for AI search responses

[Incomplete Documentation]


πŸ”§ Sample Requests

πŸ“„ Generate PDF Content

{
  "topic": "Introduction to Quantum Computing",
  "additional_context": "Focus on basic concepts",
  "sections": ["Overview", "Key Concepts", "Applications"],
  "llm_provider": "openai"
}

🎀 Start VIVA Session

{
  "subject": "Computer Science",
  "topic": "Data Structures",
  "difficulty": "medium",
  "voice": "onyx"
}

πŸ”Ž Web Search

{
  "message": "Explain quantum computing basics",
  "conversation_id": "conv_123",
  "context": {
    "user_level": "beginner"
  }
}

[Incomplete Documentation]


πŸš€ Getting Started

1. Prerequisites

Node.js >= 20
Python >= 3.11

2. Frontend Setup

cd frontend
pnpm install
pnpm run db
pnpm run dev:all

3. Backend Setup

cd agents
python -m venv .venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt
python app.py

4. Environment Setup

cp .env.example .env
# Fill in your environment variables

5. Access the Platform


πŸ‘¨β€πŸ’» Contributors

βœ’οΈ Name GitHub
Faysal Faysal Mahmud Faysal-star
Iqbal Iqbal Mahamud iq-bal
Raufun Raufun Ahsan taut0logy
Abir Abir Rahman abirzishan32
Sakibur MD Sakibur Rahman SakiburRahman07

✨ Made with ❀️ by the SynapseEd Team ✨

About

AI-Powered Learning & Edu-Management Platform

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 5