Skip to content

MEDomicsLab/MEDfl

Repository files navigation

MEDfl: A Collaborative Framework for Federated Learning in Medicine

Python Versions License: GPL v3 Build Status Contributors PyPI version Downloads


📚 Table of Contents

  1. Introduction
  2. Key Features
  3. Installation
  4. Modes of Operation
  5. Quick Start
  6. Documentation
  7. Contributing
  8. Acknowledgment
  9. Authors

1. Introduction

MEDfl is an open-source Federated Learning (FL) framework designed for both simulation and real-world distributed trainingin the medical and healthcare domains. It integrates Differential Privacy (DP), Transfer Learning (TL), and secure communication to enable privacy-preserving model training across multiple institutions—particularly suited for medical and clinical data.


2. Key Features

  • 🧩 Two Operation Modes

    • Simulation Mode: Run FL experiments locally for testing and benchmarking.
    • Real-World Mode: Connect remote clients for production-grade FL.
  • 🔒 Differential Privacy (Opacus Integration)
    Ensures client updates are mathematically protected against data leakage.

  • 🧠 Transfer Learning Integration
    Improve convergence and accuracy in small or heterogeneous datasets.

  • ⚙️ Modular Design
    Plug-and-play components for models, optimizers, datasets, and aggregation strategies.


3. Installation

pip install medfl

✅ Requires Python 3.9+.

If you prefer the development version:

git clone https://github.com/MEDomics-UdeS/MEDfl.git
cd MEDfl
pip install -e .

4. Modes of Operation

Mode Description Typical Use Case
Simulation FL Runs all clients locally in a controlled environment. Benchmarking, debugging, or prototyping.
Real-World FL Connects distributed client machines. Multi-institution collaboration, production deployments.

5. Quick Start

🌍 Real-World Federated Learning Example

Server Setup

from MEDfl.rw.server import FederatedServer, Strategy

custom_strategy = Strategy(
    name="FedAvg",
    fraction_fit=1,
    min_fit_clients=1,
    min_evaluate_clients=1,
    min_available_clients=1,
    local_epochs=1,
    threshold=0.5,
    learning_rate=0.01,
    optimizer_name="SGD",
    saveOnRounds=3,
    savingPath="./",
    total_rounds=10,
    datasetConfig={"isGlobal": True, "globalConfig": {"target": "label", "testFrac": 0.2}},
)

server = FederatedServer(
    host="0.0.0.0",
    port=8080,
    num_rounds=10,
    strategy=custom_strategy,
)
server.start()

Client Setup

from MEDfl.rw.client import FlowerClient, DPConfig

# Example: XGBoost client
xgb_params = {
    "objective": "binary:logistic",
    "eval_metric": "logloss",
    "eta": 0.1,
    "max_depth": 6,
    "subsample": 0.8,
    "colsample_bytree": 0.8,
    "tree_method": "hist",  # GPU: "gpu_hist"
}

client = FlowerClient(
    server_address="100.65.215.27:8080",
    data_path="../data/client1.csv",
    dp_config=None,            # DP only applies to neural networks
    model_type="xgb",
    xgb_params=xgb_params,
    xgb_rounds=10,
)
client.start()

💡 Tip:
Use Tailscale to connect clients and server under the same secure VPN for real-world deployments.


6. Documentation

You can generate and host the documentation locally with Sphinx:

cd docs
make clean && make html
cd _build/html
python -m http.server

7. Contributing

We welcome contributions of all kinds — from bug fixes to new modules.

  1. Fork the repo and create a feature branch.
  2. Run tests and format your code with black and flake8.
  3. Submit a Pull Request with clear details on your changes.

8. Acknowledgment

MEDfl is part of the MEDomicsLab initiative at the Université de Sherbrooke.
It was developed to enable secure, privacy-preserving, and reproducible machine learning across distributed medical datasets.


9. Authors


If you find this project useful, please consider starring it on GitHub to support continued development.

About

Medomics Federated Learning repository

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •