πΎ AgroPredict
AgroPredict is a smart, web-based solution aimed at helping farmers and agricultural planners make informed decisions through predictive analytics and a clean user interface. This app likely includes components for predicting crop performance, monitoring agricultural inputs, and providing tailored suggestions using machine learning and modern UI technologies like Tailwind CSS.
AgroPredict-main/
β
βββ AgroPredict/
β βββ main.py # Main Python backend script
β βββ static/
β β βββ css/main.css # TailwindCSS processed styles
β β βββ js/script.js # JavaScript for frontend interactivity
β βββ templates/
β β βββ index.html # HTML page served to users
β
βββ static/
β βββ css/main.css # Shared/global styles
β βββ js/script.js # Shared/global JavaScript
β
βββ package.json # Node.js dependencies
βββ package-lock.json # Dependency lock file
βββ postcss.config.js # PostCSS configuration for Tailwind
βββ tailwind.config.js # Tailwind CSS config
βοΈ Technologies Used
-
Python (likely with Flask or FastAPI as backend)
-
Tailwind CSS for UI styling
-
JavaScript for frontend logic
π Getting Started
- π¦ Install Python Dependencies
Ensure you're using Python 3.8+. Install necessary backend packages (e.g., Flask, if main.py uses it): - π
Setup Tailwind CSS (Node.js required)
Install frontend packages: - π§ Run the App
PostCSS & Node.js for CSS processing