Biomappings is a repository of community curated and predicted equivalences and related mappings between named biological entities that are not available from primary sources. It's also a place where anyone can contribute curations of predicted mappings or their own novel mappings. Ultimately, we hope that primary resources will integrate these mappings and distribute them themselves.
Mappings are stored in TSV files using the Simple Standard for Sharing Ontology Mappings (SSSOM) format that look like this:
The data are available through the following four files on the biopragmatics/biomappings GitHub repository.
| Curated | Description | Link |
|---|---|---|
| Yes | Human-curated true mappings | src/biomappings/resources/positive.sssom.tsv |
| Yes | Human-curated non-trivial false (i.e., incorrect) mappings | src/biomappings/resources/negative.sssom.tsv |
| Yes | Mappings that have been checked but not yet decided | src/biomappings/resources/unsure.sssom.tsv |
| No | Automatically predicted mappings | src/biomappings/resources/predictions.sssom.tsv |
The primary and derived data in this repository are both available under the CC0 1.0 Universal License.
Predictions are generated by scripts in the scripts/ folder. Each
uses the utilities from the biomappings.resources module to programmatically
interact with the mappings files, e.g., to add predictions.
An aggregation of positive, negative, and predicted mappings are collated in the SSSOM (here) and can be referenced by PURL such as https://w3id.org/biopragmatics/biomappings/sssom/biomappings.sssom.tsv. The positive mappings are also available as a network through NDEx.
Equivalences and related mappings that are available from the OBO Foundry and other primary sources can be accessed through Inspector Javert's Xref Database on Zenodo which was described in this blog post.
Summary statistics of the manually curated mappings and predicted mappings are automatically generated nightly and deployed as a website with GitHub Actions to https://biopragmatics.github.io/biomappings.
There are three main functions exposed from biomappings. Each loads a list of
dictionaries with the mappings in each.
import biomappings
positive_mappings = biomappings.load_mappings()
negative_mappings = biomappings.load_false_mappings()
predicted_mappings = biomappings.load_predictions()Full documentation can be found on ReadTheDocs.
The most recent release can be installed from PyPI with uv:
$ uv pip install biomappingsor with pip:
$ python3 -m pip install biomappingsThe most recent code and data can be installed directly from GitHub with uv:
$ uv pip install git+https://github.com/biopragmatics/biomappings.gitor with pip:
$ python3 -m pip install git+https://github.com/biopragmatics/biomappings.gitWe welcome contributions in the form of curations to any of the four primary TSV files in this repository via a pull request to the main Biomappings repository at https://github.com/biopragmatics/biomappings.
Predicted mappings can be curated by moving a row in the predictions.sssom.tsv
file into either the positive mappings file (positive.sssom.tsv), negative
mappings file (negative.sssom.tsv), or the unsure mappings file
(unsure.sssom.tsv). Additionally, the confidence column should be removed, a
mapping_justification column should be added with an appropriate value from
the SEMAPV vocabulary, such as
the value semapv:ManualMappingCuration, and your ORCiD identifier should be
written as a CURIE (e.g., orcid:0000-0003-1307-2508) in the author_id
column.
Novel mappings can be curated by adding a full row to the positive mappings file
(positive.sssom.tsv) following the format of the previous lines.
While Biomappings is generally able to use any predicate written as a compact URI (CURIE), it's preferred to use predicates from the Simple Knowledge Organization System (SKOS) to denote hierarchical relationships. The three most common predicates that are useful for curating mappings are:
| Predicate | Description |
|---|---|
skos:exactMatch |
The two terms can be used interchangeably |
skos:broadMatch |
The object term is a super-class of the subject |
skos:narrowMatch |
The object term is a sub-class of the subject |
GitHub has an interface for editing files directly in the browser. It will take care of creating a branch for you and creating a pull request. After logging into GitHub, click one of the following links to be brought to the editing interface:
This has the caveat that you can only edit one file at a time. It's possible to navigate to your own forked version of the repository after, to the correct branch (will not be the default one), then edit other files in the web interface as well. However, if you would like to do this, then it's probably better to see the following instructions on contributing locally.
- Fork the repository at https://github.com/biopragmatics/biomappings, clone locally, and make a new branch (see below)
- Edit one or more of the resource files (
positive.sssom.tsv,negative.sssom.tsv,unsure.sssom.tsv,predictions.sssom.tsv) - Commit to your branch, push, and create a pull request back to the upstream repository.
Rather than editing files locally, this repository also comes with a web-based
curation interface. Install the code in development mode with the web option
(which installs flask and flask-bootstrap) using:
$ git clone https://github.com/biopragmatics/biomappings.git
$ cd biomappings
$ git checkout -b your-branch-name
$ python3 -m pip install -e .[web]The web application can be run with:
$ biomappings webIt can be accessed by navigating to http://localhost:5000/ in your browser.
After you do some curations, the web application takes care of interacting with
the git repository from which you installed biomappings via the "commit and
push" button.
Note if you've installed biomappings via
PyPI, then running the web curation
interface doesn't make much sense, since it's non-trivial for most users to find
the location of the resources within your Python installation's site-packages
folder, and you won't be able to contribute them back.
There are three places where curators of Biomappings are credited:
- ORCiD identifiers of curators are stored in each mapping
- The summary website groups and counts contributions curator
- A curation leaderboard is under construction at APICURON, though note that this is not up-to-date.
The code in this package is licensed under the MIT License. Data are licensed under the CC0 License.
Prediction and Curation of Missing Biomedical Identifier Mappings with Biomappings
Hoyt, C. T., Hoyt, A. L., and Gyori, B. M. (2022)
Bioinformatics, btad130.
@article{Hoyt2022,
title = {{Prediction and Curation of Missing Biomedical Identifier Mappings with Biomappings}},
author = {Hoyt, Charles Tapley and Hoyt, Amelia L and Gyori, Benjamin M},
journal = {Bioinformatics},
year = {2023},
month = {03},
issn = {1367-4811},
doi = {10.1093/bioinformatics/btad130},
url = {https://doi.org/10.1093/bioinformatics/btad130},
note = {btad130},
eprint = {https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btad130/49521613/btad130.pdf},
}Biomappings was developed by the INDRA Lab, a part of the Laboratory of Systems Pharmacology and the Harvard Program in Therapeutic Science (HiTS) at Harvard Medical School.
The development of this project has been funded in part by the DARPA Young Faculty Award W911NF2010255 (PI: Benjamin M. Gyori).
This package was created with @audreyfeldroy's cookiecutter package using @cthoyt's cookiecutter-snekpack template.
See developer instructions
The final section of the README is for if you want to get involved by making a code contribution.
To install in development mode, use the following:
$ git clone git+https://github.com/biopragmatics/biomappings.git
$ cd biomappings
$ uv pip install -e .Alternatively, install using pip:
$ python3 -m pip install -e .After cloning the repository and installing tox with
uv tool install tox --with tox-uv or python3 -m pip install tox tox-uv, the
unit tests in the tests/ folder can be run reproducibly with:
$ tox -e pyAdditionally, these tests are automatically re-run with each commit in a GitHub Action.
The documentation can be built locally using the following:
$ git clone git+https://github.com/biopragmatics/biomappings.git
$ cd biomappings
$ tox -e docs
$ open docs/build/html/index.htmlThe documentation automatically installs the package as well as the docs extra
specified in the pyproject.toml. sphinx plugins like
texext can be added there. Additionally, they need to be added to the
extensions list in docs/source/conf.py.
The documentation can be deployed to ReadTheDocs using
this guide. The
.readthedocs.yml YAML file contains all the configuration
you'll need. You can also set up continuous integration on GitHub to check not
only that Sphinx can build the documentation in an isolated environment (i.e.,
with tox -e docs-test) but also that
ReadTheDocs can build it too.
See maintainer instructions
ReadTheDocs is an external documentation hosting service that integrates with GitHub's CI/CD. Do the following for each repository:
- Log in to ReadTheDocs with your GitHub account to install the integration at https://readthedocs.org/accounts/login/?next=/dashboard/
- Import your project by navigating to https://readthedocs.org/dashboard/import then clicking the plus icon next to your repository
- You can rename the repository on the next screen using a more stylized name (i.e., with spaces and capital letters)
- Click next, and you're good to go!
Zenodo is a long-term archival system that assigns a DOI to each release of your package. Do the following for each repository:
- Log in to Zenodo via GitHub with this link: https://zenodo.org/oauth/login/github/?next=%2F. This brings you to a page that lists all of your organizations and asks you to approve installing the Zenodo app on GitHub. Click "grant" next to any organizations you want to enable the integration for, then click the big green "approve" button. This step only needs to be done once.
- Navigate to https://zenodo.org/account/settings/github/, which lists all of your GitHub repositories (both in your username and any organizations you enabled). Click the on/off toggle for any relevant repositories. When you make a new repository, you'll have to come back to this
After these steps, you're ready to go! After you make "release" on GitHub (steps for this are below), you can navigate to https://zenodo.org/account/settings/github/repository/biopragmatics/biomappings to see the DOI for the release and link to the Zenodo record for it.
The Python Package Index (PyPI) hosts packages so they can
be easily installed with pip, uv, and equivalent tools.
- Register for an account here
- Navigate to https://pypi.org/manage/account and make sure you have verified your email address. A verification email might not have been sent by default, so you might have to click the "options" dropdown next to your address to get to the "re-send verification email" button
- 2-Factor authentication is required for PyPI since the end of 2023 (see this blog post from PyPI). This means you have to first issue account recovery codes, then set up 2-factor authentication
- Issue an API token from https://pypi.org/manage/account/token
This only needs to be done once per developer.
This needs to be done once per machine.
$ uv tool install keyring
$ keyring set https://upload.pypi.org/legacy/ __token__
$ keyring set https://test.pypi.org/legacy/ __token__Note that this deprecates previous workflows using .pypirc.
After installing the package in development mode and installing tox with
uv tool install tox --with tox-uv or python3 -m pip install tox tox-uv, run
the following from the console:
$ tox -e finishThis script does the following:
- Uses bump-my-version to
switch the version number in the
pyproject.toml,CITATION.cff,src/biomappings/version.py, anddocs/source/conf.pyto not have the-devsuffix - Packages the code in both a tar archive and a wheel using
uv build - Uploads to PyPI using
uv publish. - Push to GitHub. You'll need to make a release going with the commit where the version was bumped.
- Bump the version to the next patch. If you made big changes and want to bump
the version by minor, you can use
tox -e bumpversion -- minorafter.
- Navigate to https://github.com/biopragmatics/biomappings/releases/new to draft a new release
- Click the "Choose a Tag" dropdown and select the tag corresponding to the release you just made
- Click the "Generate Release Notes" button to get a quick outline of recent changes. Modify the title and description as you see fit
- Click the big green "Publish Release" button
This will trigger Zenodo to assign a DOI to your release as well.
This project uses cruft to keep boilerplate (i.e., configuration, contribution
guidelines, documentation configuration) up-to-date with the upstream
cookiecutter package. Install cruft with either uv tool install cruft or
python3 -m pip install cruft then run:
$ cruft updateMore info on Cruft's update command is available here.

