π Local-first semantic search for your PDF documents
Index and search your PDFs using AI powered semantic embeddings.
Everything runs locally on your machine no cloud, no external services, complete privacy.
- 100% Local: Your documents never leave your machine
- Fast Semantic Search: Find documents by meaning, not just keywords
- Cross-Platform: Native apps for macOS, Windows, and Linux
- GPU Accelerated: Auto-detects Apple Silicon, NVIDIA, or AMD GPUs
- PDF Optimized: Powered by PyMuPDF for reliable text extraction
- Web Interface: UI for indexing and searching
Download the app for your platform from GitHub Releases:
| Platform | Download |
|---|---|
| macOS | DocFinder-macOS.dmg |
| Windows | DocFinder-Windows-Setup.exe |
| Linux | DocFinder-Linux-x86_64.AppImage |
- Open DocFinder
- Enter the path to your PDF folder (e.g.,
~/Documents/Papers) - Click Index and wait for completion
Type a natural language query like:
- "contract about property sale"
- "machine learning introduction"
- "invoice from December 2024"
DocFinder finds relevant documents by meaning, not just exact keywords.
| Component | Minimum | Recommended |
|---|---|---|
| RAM | 4 GB | 8 GB+ |
| Disk Space | 500 MB | 1 GB+ |
| macOS | 11.0 (Big Sur) | 13.0+ (Ventura) |
| Windows | 10 | 11 |
| Linux | Ubuntu 20.04+ | Ubuntu 22.04+ |
DocFinder automatically detects your hardware and uses the best available option:
| Hardware | Support | Notes |
|---|---|---|
| Apple Silicon (M1/M2/M3/M4) | β Automatic | Uses Metal Performance Shaders |
| NVIDIA GPU | β
With [gpu] extra |
Requires CUDA drivers |
| AMD GPU | β Automatic | Uses ROCm on Linux |
| CPU | β Always works | Fallback option |
- Download
DocFinder-macOS.dmg - Open the DMG and drag DocFinder to Applications
- First launch: Right-click β Open β Click Open again
β οΈ macOS shows a warning because the app isn't signed with an Apple Developer ID. This is normal for open-source software.
- Download
DocFinder-Windows-Setup.exe - Run the installer
- If SmartScreen warns you: Click More info β Run anyway
wget https://github.com/filippostanghellini/DocFinder/releases/latest/download/DocFinder-Linux-x86_64.AppImage
chmod +x DocFinder-Linux-x86_64.AppImage
./DocFinder-Linux-x86_64.AppImageFor developers or advanced users:
# Create virtual environment
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install DocFinder
pip install .
# With GPU support (NVIDIA)
pip install '.[gpu]'
# With all extras (development + web + GUI)
pip install '.[dev,web,gui]'Just launch DocFinder from your Applications folder, Start Menu, or run the AppImage.
# Index a folder of PDFs
docfinder index ~/Documents/PDFs
# Search your documents
docfinder search "quarterly financial report"
# Launch web interface
docfinder web
# Launch desktop GUI (from source)
docfinder-gui| Mode | Database Location |
|---|---|
| Desktop App | ~/Documents/DocFinder/docfinder.db |
| Development | data/docfinder.db |
# Clone the repository
git clone https://github.com/filippostanghellini/DocFinder.git
cd DocFinder
# Install dependencies
make install-gui
# Run the GUI
docfinder-gui
# Build native app (macOS)
make build-macossrc/docfinder/
βββ ingestion/ # PDF parsing and text chunking
βββ embedding/ # AI model wrappers (sentence-transformers, ONNX)
βββ index/ # SQLite vector storage and search
βββ utils/ # File handling and text utilities
βββ web/ # FastAPI web interface
Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under the GNU Affero General Public License v3.0 (AGPL-3.0).
Note: DocFinder was originally released under the MIT License. Starting from version 1.1.1, the license was changed to AGPL-3.0 to comply with PyMuPDF licensing requirements.



