Source code for The ML.ENERGY Leaderboard, which is a web leaderboard that displays results of The ML.ENERGY benchmark.
After running the benchmark and collecting results, you can build the data for the leaderboard using the following command (with path adjustments as necessary):
BASE_DIR="/path/to/results"
uv run --with numpy --with PyYAML scripts/build_data.py \
--results-dir "$BASE_DIR/llm/h100/run" \
--results-dir "$BASE_DIR/llm/b200/run" \
--results-dir "$BASE_DIR/diffusion/h100/run" \
--results-dir "$BASE_DIR/diffusion/b200/run" \
--output-dir public/data \
--llm-config-dir ../benchmark/configs/vllm \
--diffusion-config-dir ../benchmark/configs/xditnpm run dev@inproceedings{mlenergy-neuripsdb25,
title={The {ML.ENERGY Benchmark}: Toward Automated Inference Energy Measurement and Optimization},
author={Jae-Won Chung and Jeff J. Ma and Ruofan Wu and Jiachen Liu and Oh Jun Kweon and Yuxuan Xia and Zhiyu Wu and Mosharaf Chowdhury},
year={2025},
booktitle={NeurIPS Datasets and Benchmarks},
}