Skip to content
/ VDRP Public

[NeurIPS 2025] Official code for Visual Diversity and Region-aware Prompt Learning for Zero-shot HOI detection

License

Notifications You must be signed in to change notification settings

mlvlab/VDRP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[NeurIPS 25] Visual Diversity and Region-aware Prompt Learning for Zero-shot HOI detection

Official PyTorch implementation of NeurIPS 2025 paper: "Visual Diversity and Region-aware Prompt Learning for Zero-shot HOI Detection"

Dataset

Follow the process of UPT.

The downloaded files should be placed as follows. Otherwise, please replace the default path to your custom locations.

|- VDRP
|   |- hicodet
|   |   |- hico_20160224_det
|   |       |- annotations
|   |       |- images
|   |- vcoco
|   |   |- mscoco2014
|   |       |- train2014
|   |       |- val2014
:   :      

Dependencies

  1. Follow the instructions to install dependencies.
git clone github.com:https://github.com/YangChanhyeong/VDRP.git

conda create --name vdrp python=3.9 # CLIP dependency
conda activate vdrp

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install matplotlib==3.6.3 scipy==1.10.0 tqdm==4.64.1
pip install numpy==1.24.1 timm==0.6.12
pip install fvcore

cd pocket
pip install -e .
  1. Our code is built upon CLIP. Install the local package of CLIP:
cd CLIP && python setup.py develop && cd ..
  1. Download the CLIP weights to checkpoints/pretrained_clip.
|- VDRP
|   |- checkpoints
|   |   |- pretrained_clip
|   |       |- ViT-B-16.pt
|   |       |- ViT-L-14-336px.pt
:   :      
  1. Download the weights of DETR and put them in checkpoints/.
Dataset DETR weights
HICO-DET weights
V-COCO weights
|- VDRP
|   |- checkpoints
|   |   |- detr-r50-hicodet.pth
|   |   |- detr-r50-vcoco.pth
:   :   :

Pre-extracted Features

This repository provides pre-computed visual diversity statistics and concept embeddings used for our VDRP experiments.

Group covariance statistics for visual diversity-aware prompt learning: Link

data/
├── distribution/ # CLIP ViT-B/16
│ ├── non_rare_first/vdrp_group_cov.pt
│ ├── rare_first/vdrp_group_cov.pt
│ ├── unseen_object/vdrp_group_cov.pt
│ └── unseen_verb/vdrp_group_cov.pt
│
├── distribution_L/ # CLIP ViT-L/14
│ ├── non_rare_first/vdrp_group_cov.pt
│ ├── rare_first/vdrp_group_cov.pt
│ ├── unseen_object/vdrp_group_cov.pt
│ ├── unseen_verb/vdrp_group_cov.pt
│ ├── default/vdrp_group_cov.pt
│ └── vcoco/vdrp_group_cov.pt
:

Concept embeddings for region-aware prompt augmentation: Link

data/verb_concepts/
├── human_concepts.pt
├── object_concepts.pt
├── context_concepts.pt
├── human_concepts_L.pt
├── object_concepts_L.pt
├── context_concepts_L.pt
├── human_concepts_vcoco.pt
├── object_concepts_vcoco.pt
└── context_concepts_vcoco.pt

Train/Test

Please follow the commands in ./scripts.

Model Zoo

Method Backbone Type Unseen↑ Seen↑ Full↑ HM↑
VDRP ResNet50+ViT-B/16 NF-UC 36.45 31.60 32.57 33.85
VDRP ResNet50+ViT-B/16 RF-UC 31.29 34.41 33.78 32.77
VDRP ResNet50+ViT-B/16 UO 36.13 32.84 33.39 34.41
VDRP ResNet50+ViT-B/16 UV 26.69 33.72 32.73 29.80

Model Weights

You can download the VDRP weights this link:

https://drive.google.com/drive/folders/1c0buK5W9fnF869C_zdtrEcyxsedSNoTv?usp=sharing

Citation

If you find our paper and/or code helpful, please consider citing:

@article{yang2025visual,
  title={Visual Diversity and Region-aware Prompt Learning for Zero-shot HOI Detection},
  author={Yang, Chanhyeong and Song, Taehoon and Park, Jihwan and Kim, Hyunwoo J},
  journal={arXiv preprint arXiv:2510.25094},
  year={2025}
}

Acknowledgement

We gratefully thank the authors from UPT, PViC, ADA-CM and CMMP for open-sourcing their code.

About

[NeurIPS 2025] Official code for Visual Diversity and Region-aware Prompt Learning for Zero-shot HOI detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published